Cf: Peirce’s 1870 “Logic of Relatives” • Comment 11.19
https://inquiryintoinquiry.com/2014/05/29/peirces-1870-logic-of-relatives-c…
Peirce’s 1870 “Logic of Relatives” • Comment 11.19
https://oeis.org/wiki/Peirce%27s_1870_Logic_Of_Relatives_%E2%80%A2_Part_2#C…
All,
Up to this point in the 1870 Logic of Relatives, Peirce has
introduced the “number of” function on logical terms, v : S → R
such that v : s ↦ [s], and discussed the extent to which its use
as a measure satisfies the relevant measure-theoretic principles,
beginning with the following two.
• The “number of” map exhibits a certain type of “uniformity property”,
where the value of the measure on a uniformly qualified population is
in fact actualized by each member of the population.
• The “number of” map satisfies an “order morphism principle”, where
the partial order of logical terms under implication or inclusion is
reflected to a moderate degree by the linear order of their measures.
In Selection 4 Peirce takes up the action of the “number of” function on
two types of more or less additive operations we normally consider in logic.
Selection 4 (CP 3.67)
https://inquiryintoinquiry.com/2014/01/31/peirces-1870-logic-of-relatives-s…
NOF 3.1
=======
CSP: “It is plain that both the regular non-invertible addition and the
invertible addition satisfy the absolute conditions.” (CP 3.67).
Peirce uses the sign “+,” to indicate what he calls the
“regular non-invertible addition”, corresponding to the
inclusive disjunction of logical terms or the union of
their extensions as sets.
Peirce uses the sign “+” to indicate what he calls the
“invertible addition”, corresponding to the exclusive
disjunction of logical terms or the symmetric difference
of their extensions as sets.
NOF 3.2
=======
CSP: “But the notation has other recommendations. The conception of
taking together involved in these processes is strongly analogous
to that of summation, the sum of 2 and 5, for example, being the
number of a collection which consists of a collection of two and
a collection of five.” (CP 3.67).
A full interpretation of the above remark would require us to pick up the
precise technical sense in which Peirce is using the word “collection” and
that would take us back to his logical reconstruction of certain aspects of
number theory, all of which I am putting off to another time, but it is still
possible to get a rough sense of what he is saying relative to the present frame
of discussion.
The “number of” map v : S → R evidently induces some sort of morphism
with respect to logical sums. If this were true in the strictest sense,
we could remove the question marks from the following dubious equations.
• v(x +, y) =?= v(x) + v(y)
Equivalently:
• [x +, y] =?= [x] + [y]
Of course, things are not quite that simple when it comes to
inclusive disjunctions and set‑theoretic unions, so it is usual
to introduce the concept of a “sub‑additive measure” to describe
the principle that does hold here, namely, the following.
• v(x +, y) ≤ v(x) + v(y)
Equivalently:
• [x +, y] ≤ [x] + [y]
That is why Peirce trims his discussion of the point with the following hedge.
NOF 3.3
=======
CSP: “Any logical equation or inequality in which no operation but addition
is involved may be converted into a numerical equation or inequality by
substituting the numbers of the several terms for the terms themselves —
provided all the terms summed are mutually exclusive.” (CP 3.67).
Finally, a morphism with respect to addition, even a contingently qualified one,
must do the right thing on behalf of the additive identity element, as follows.
NOF 3.4
=======
CSP: “Addition being taken in this sense, ‘nothing’ is to be denoted by zero,
for then x +, 0 = x whatever is denoted by x; and this is the definition
of zero. This interpretation is given by Boole, and is very neat, on account
of the resemblance between the ordinary conception of zero and that of nothing,
and because we shall thus have [0] = 0.” (CP 3.67).
With respect to the nullity 0 in S and the number 0 in R,
we have the following equation.
• v(0) = [0] = 0.
In sum, therefore, it can be said:
A measure only serves which also preserves
a due respect for the function of a vacuum
in nature.
Regards,
Jon