Cf: Peirce’s 1870 “Logic of Relatives” • Selection 7
https://inquiryintoinquiry.com/2014/02/07/peirces-1870-logic-of-relatives-s…
All,
We continue with §3. Application of the Algebraic Signs to Logic.
Peirce’s 1870 “Logic of Relatives” • Selection 7
================================================
https://oeis.org/wiki/Peirce%27s_1870_Logic_Of_Relatives_%E2%80%A2_Part_1#S…
<QUOTE CSP>
The Signs for Multiplication (cont.)
The associative principle does not hold in this counting of factors.
Because it does not hold, these subjacent numbers are frequently
inconvenient in practice, and I therefore use also another mode
of showing where the correlate of a term is to be found. This is
by means of the marks of reference, † ‡ ∥ § ¶, which are placed
subjacent to the relative term and before and above the correlate.
Thus, giver of a horse to a lover of a woman may be written:
[Display] Giver of a Horse to a Lover of a Woman
https://inquiryintoinquiry.files.wordpress.com/2021/12/peirces-1870-lor-e28…
The asterisk I use exclusively to refer to the last
correlate of the last relative of the algebraic term.
Now, considering the order of multiplication to be: — a term,
a correlate of it, a correlate of that correlate, etc. — there
is no violation of the associative principle. The only violations
of it in this mode of notation are that in thus passing from relative
to correlate, we skip about among the factors in an irregular manner,
and that we cannot substitute in such an expression as “goh” a single
letter for “oh”.
I would suggest that such a notation may be found useful in treating
other cases of non‑associative multiplication. By comparing this with
what was said above [CP 3.55] concerning functional multiplication, it
appears that multiplication by a conjugative term is functional, and
that the letter denoting such a term is a symbol of operation. I am
therefore using two alphabets, the Greek and [Gothic], where only one
was necessary. But it is convenient to use both.
(Peirce, CP 3.71–72)
</QUOTE>
Regards,
Jon