Cluster of Excellence Bilateral Artificial Intelligence
Pre-Call for Applications
For the recently established Cluster of Excellence CoE Bilateral
Artificial Intelligence (BILAI), funded by the Austrian Science Fund
(FWF), we are looking for more than 50 PhD students and 10 Post-Doc
researchers (m/f/d) to join our team at one of the six leading research
institutions across Austria (see below).
In BILAI, major Austrian players in Artificial Intelligence (AI) are
teaming up to work towards Broad AI. As opposed to Narrow AI, which is
characterized by task-specific skills, Broad AI seeks to address a wide
array of problems, rather than being limited to a single task or domain.
To develop its foundations, BILAI employs a Bilateral AI approach,
effectively combining sub-symbolic AI (neural networks and machine
learning) with symbolic AI (logic, knowledge representation, and
reasoning) in various ways.
Harnessing the full potential of both symbolic and sub-symbolic
approaches can open new avenues for AI, enhancing its ability to solve
novel problems, adapt to diverse environments, improve reasoning skills,
and increase efficiency in computation and data use. These key features
enable a broad range of applications for Broad AI, from drug development
and medicine to planning and scheduling, autonomous traffic management,
and recommendation systems. Prioritizing fairness, transparency, and
explainability, the development of Broad AI is crucial for addressing
ethical concerns and ensuring a positive impact on society.
The research team is committed to cross-disciplinary work in order to
provide theory and models for future AI and deployment to applications.
CoE Research Institutions:
Johannes Kepler Universität Linz (JKU Linz)
Technische Universität Wien (TU Wien)
Alpen-Adria-Universität Klagenfurt (AAU)
Institute of Science and Technology Austria (ISTA)
Technische Universität Graz (TU Graz)
Wirtschaftsuniversität Wien (WU Wien)
Board of directors:
Sepp Hochreiter (JKU Linz)
Agata Ciabattoni (TU Wien)
Thomas Eiter (TU Wien)
Gerhard Friedrich (AAU)
Christoph Lampert (ISTA)
Robert Legenstein (TU Graz)
Axel Polleres (WU Wien)
Martina Seidl (JKU Linz)
The call for applications will open on *** September 1,*** 2024. For more
information, see http://www.bilateral-ai.net
Stay tuned!
--
Johannes Fürnkranz
Computational Data Analytics
Institute for Application Oriented Knowledge Processing (FAW)
Johannes Kepler University Linz
TLDR: postdoc position (PhD required), full-time employment (40
hrs/week), duration 2 years (preferred start October 2024), research and
teaching, supervisor: Marko Tkalčič, University of Primorska, Koper,
Slovenia
Research topics:
- psychologically-informed user modeling,
- psychologically-informed item modeling,
- inference of user and item characteristics,
- explanations,
- recommender systems.
Interested candidates can find me at UMAP next week to discuss it.
Details:
The Department of Information Sciences and Technologies (DIST) at the
Faculty of Mathematics, Natural Sciences and Information
Technologies (FAMNIT) of the University of Primorska is seeking a top
early-career researcher for a postdoctoral position in the area of
psychologically-informed user modeling under the supervision of assoc.
prof. dr. Marko Tkalčič.
The project will explore how psychologically-informed features can be
used to model users, items, infer user characteristics from digital
traces, infer item characteristics, provide explanations and
recommendations in the music and film domains. The methodologies will
include user studies and machine learning. The candidate will work in a
great team with Marko Tkalčič as part of the HICUP lab
(https://hicup.famnit.upr.si/) in the beautiful Mediterranean city of
Koper (the beach is only a 3 min walk from the office).
- Full-time employment (40 hrs/week). Full social security.
- The position is for two years.
- The preferred starting date is October 2024.
- The candidate must have (or expect to obtain shortly) a PhD in
computer science or in an area relevant to the research topics.
- The ideal candidate should posses expertise in the following areas:
- recommender systems,
- machine learning,
- user modeling.
- Expertise in one or more of the following areas will be appreciated:
- ML explainability,
- computational psychology,
- computational social science,
- media-related knowledge (musicology etc.).
- The position includes a small teaching load (1 course/semester, 3-4
hrs/week).
- The position comes with funding for travel (conferences, visitors).
Application Process:
The applications will be assessed on a rolling basis until the position
is filled. To apply, send an email to marko.tkalcic(a)famnit.upr.si with
the following documentation:
- motivation letter,
- CV,
- list of publications,
- research statement,
- names and email addresses of two to three references.
Link to call: https://markotkalcic.com/postdoc_2024.html
--
----------------------------------------------------------------------
Dr. Marko Tkalcic
http://markotkalcic.com
Twitter: https://twitter.com/#!/RecSysMare
Linkedin: http://www.linkedin.com/in/markotkalcic
Google Scholar: http://scholar.google.com/citations?user=JQ2puysAAAAJ
----------------------------------------------------------------------
Dear colleagues,
we would like to bring your attention to the deadline extension for this year's LWDA KDML workshop taking place in Würzburg from September 23 to September 25. This year, the meeting will be co-located with the KI 2024 conference.
The new submission deadline is: July 14, 2024
We invite submissions on all aspects of data mining, knowledge discovery, and machine learning. In addition to original research, we also invite resubmissions of recently published articles related to KDML at major conference venues. Moreover, KDML explicitly invites student submissions.
Please find the full Call for Papers here: https://www.informatik.uni-wuerzburg.de/lwda24/kdml/
We are looking forward to receiving your submissions.
Best regards,
Daniel Schlör and Simon Klüttermann,
KDML workshop organizers
Dear all,
there is an open position for a PhD student or a PostDoc in the new
knowledge representation group at Paderborn University! This is a full
position for three years.
The KR group is associated to the research area of Data Science at the
Computer Science institute of the university and is dedicated to
foundational research on logical formalisms and their reasoning
problems. Current research topics are reasoning methods in formal
ontology languages (Description Logics), in particular,
ontology-mediated query answering, learning in description logics, and
forms of nonmonotonic reasoning. We offer a friendly and flexible
working environment in a dynamic and research-oriented team within an
international research network.
A successful applicant would have
• good background in formal methods, e.g. logic, complexity theory and
model theory
• a masters degree / PhD in computational logic or related fields
• good English speaking and writing skills; speaking German is a plus
• experience in implementing complex systems is a plus
For further details on the PostDoc position and the application
procedure see
https://cs.uni-paderborn.de/fileadmin-eim/informatik/fg/kr/Kennziffer6531_-…
.
The application deadline for the position is July 31st 2024. Should you
have questions about the positions or the application procedure, please
send an email to turhan<at>uni-paderborn.de .
Best regards, Anni-Yasmin Turhan
--
--
Prof. Dr. Anni-Yasmin Turhan
Knowledge Representation Group
University of Paderborn
The International Conference on Web Search and Data Mining (WSDM) invites submissions for its 2025 edition, to be held from March 10th-14th, 2025, organized at Hannover, Germany. WSDM is a premier forum for presenting and discussing the latest advances in web search and data mining, bringing together researchers and practitioners from academia and industry.
Important Dates:
===========
Abstract Submission Deadline: [August 7, 2024]
Paper Submission Deadline: [August 14, 2024]
Notification of Acceptance: [October 23, 2024]
Camera-ready Deadline: [December 18, 2024]
Conference Dates: [March 10-14, 2025]
Topics:
===========
Topics of interest include, but are not limited to:
Web Search
Web Mining and Content Analysis
Web of Things, Ubiquitous and Mobile Computing
Privacy, Fairness, Interpretability
Social Networks
Intelligent Assistants
Crowdsourcing and Human Computation
Emerging and Creative Applications
Information Integrity
Foundation Models
Submission Guidelines:
==============
Papers must be formatted according to the ACM SIG proceedings template. Submissions will undergo a rigorous double-blind review process by the Program Committee. Papers should be submitted electronically through the conference submission system by the deadline specified above.
Publication:
=======
Accepted papers will be published in the conference proceedings, available through the ACM Digital Library.
Website:
======
For the latest updates and information, please visit the conference website: https://www.wsdm-conference.org/2025/#calls <https://www.wsdm-conference.org/2025/#calls>
Join us at WSDM 2025 to explore the frontier of web search and data mining research and innovation!
***CoKA: --- 2nd Call for Contributions***
================================================================
Conceptual Knowledge Acquisition: Challenges, Opportunities, and Use Cases
Workshop at the 1st International Joint Conference on
Conceptual Knowledge Structures (CONCEPTS 2024)
September 9–13 2024, Cádiz, Spain
Workshop Website: https://www.kde.cs.uni-kassel.de/coka/
Conference website: https://concepts2024.uca.es
================================================================
Formal concept analysis (FCA) can help make sense of data and the underlying
domain --- provided the data is not too big, not too noisy, representative of
the domain, and if there is data in the first place. What if you don’t have such
data readily available but are prepared to invest in collecting it and have
access to domain experts or other reliable queryable sources of information?
Conceptual exploration comes to the rescue!
Conceptual exploration is a family of knowledge-acquisition techniques within
FCA. The goal is to build a complete implicational theory of a domain (with
respect to a fixed language) by posing queries to a domain expert. When properly
implemented, it is a great tool that can help organize the process of scientific
discovery.
Unfortunately, proper implementations are scarce and success stories of using
conceptual exploration are somewhat rare and limited in scope. With this
workshop, we intend to analyze the situation and, maybe, find a solution. If
- you succeeded in acquiring new knowledge about or building a satisfying
conceptual representation of some domain with conceptual exploration before;
- you attempted conceptual exploration in application to your problem but failed
miserably;
- you want to use conceptual exploration to analyze some domain, but you don’t
know where and how to start;
- you are aware of alternatives to conceptual exploration;
then come to the workshop to share your experiences, insights, ideas, and
concerns with us!
==================
Keywords and Topics
==================
Knowledge Acquisition and Capture
Conceptual Exploration
Design Patterns and Paradigmatic Examples
successful use cases and real-world applications
challenges and lessons learned
application principles
missing theoretical foundations
missing technical infrastructure
integration with other theories and technologies
=========================
Duration, Format, and Dates
=========================
We invite contributions in the form of an extended abstract of up to two pages.
In addition, supplementary material, such as data sets, detailed descriptions,
or visualizations, may be submitted.
The workshop is planned for half a day within the conference dates and at the
same venue. It will consist of several short presentations each followed by a
plenary discussion.
Please send your contributions until *July 10, 2024* to
tom.hanika(a)uni-hildesheim.de. If you are not sure whether your contribution
matches the topics or the format of the workshop, you are welcome to contact the
organizers prior to submitting the abstract. An acceptance notification will be
sent within two weeks upon receiving the submission.
===================
Workshop Organizers
===================
- Tom Hanika, University of Hildesheim
- Sergei Obiedkov, TU Dresden
- Bernhard Ganter, Ernst-Schröder-Zentrum, Darmstadt
--
Dr. Tom Hanika
Universität Kassel Tel.: +49 (0) 561 804 6252
https://www.kde.cs.uni-kassel.de/hanika
---------------------------------------------------------------------
Die Arbeitsgruppe Information Processing and Analytics der
Humboldt-Universität zu Berlin befasst sich mit der Extraktion von
Wissen aus großen Datenmengen und erforscht dabei Technologien und
Verfahren aus den Bereichen Data Mining & Machine Learning, Linked
Data, Information Extraction und Natural Language Processing. Zur
Verstärkung unseres Schwerpunktes Neuro-symbolische Künstliche
Intelligenz ist ab sofort eine Promotionsstelle zu besetzen.
(Wiss. Mitarbeiter*in befristet für vorauss. 4 Jahre - E 13 TV-L HU)
Mögliche Anwendungsfelder sind die
- Erkennung und Extraktion rhetorischer Stilmittel in großen
Textkorpora,
- Extraktion und Verlinkung bibliographischer Metadaten in
geisteswissenschaftlichen Publikationen,
- temporale Analyse von (archivierten) Web-Inhalten.
Aufgabengebiete:
- wissenschaftliche Dienstleistungen in Forschung und Lehre
- Aufgaben zur eigenen wissenschaftlichen Qualifikation (Promotion)
- wissenschaftliche Betreuung der Datensammlungen der Arbeitsgruppe
sowie der zugehörigen Analyseumgebung
- Aufbau eines Dienstes zur Nutzung und Erforschung von großen
Sprachmodellen (LLMs), insbesondere für die Digital Humanities
- Mitarbeit am Social-Bookmarking-System BibSonomy
Ihr Profil:
Erforderlich sind:
- guter Universitätsabschluss in Informatik oder verwandten Fächern
(Abschlussarbeit muss zumindestet eingereicht sein)
- sehr gute Programmierkenntnisse und Erfahrung im Umgang mit modernen
Softwareentwicklungs-Werkzeugen
- gute Kenntnisse in mindestens einem der folgenden Bereiche: Data
Mining/Machine Learning, Web Crawling, Informationsextraktion,
Natural Language Processing, Named Entity Recognition and Linking
- sehr gute Deutsch- und gute Englischkenntnisse in Wort und Schrift
Erwünscht sind:
- Interesse an teamorientierter Forschungsarbeit auf internationalem
Niveau in einem interdisziplinären Team
- Interesse an der Verarbeitung großer Datenmengen und der Betreuung
der entsprechenden Infrastruktur
- sehr gute Organisationsfähigkeit, Belastbarkeit und soziale Kompetenz
- sehr gute Kommunikationsfähigkeit
Die Bereitschaft zu gelegentlichen Dienstreisen aus Anlass von
Projekttreffen oder Tagungen wird erwartet.
Unser Angebot:
- eine abwechslungsreiche Tätigkeit in einem dynamischen und
spannenden Forschungsumfeld, in dem Teamarbeit, Transparenz, offene
Innovationsprozesse und ständige Weiterbildung unverzichtbar sind
- leistungsorientiertes und forschungsstarkes Team
- die Altersvorsorge für den öffentlichen Dienst (VBL)
- flexible Arbeitszeiten und Homeoffice-Regelungen bzw. ein
Arbeitsplatz in Berlin Mitte
- Austausch und Kooperation mit den Mitarbeiter*innen und
Doktorand*innen des Instituts für Bibliotheks- und
Informationswissenschaft
- Chancengleichheit und Vereinbarkeit von Beruf und Familie
- die Möglichkeit, ausgiebig Erfahrung im Umgang mit großen
Datenmengen sowie der geeigneten Infrastruktur (Cluster-System) und
aktuellen Technologien (z.B. Apache Spark) zu sammeln
Bewerbungen (mit Anschreiben, Lebenslauf und relevanten Zeugnissen
sowie einer informativen Kurzzusammenfassung der letzten
Abschlussarbeit (max. eine Seite) richten Sie bitte bis zum
*05.07.2024* unter Angabe der Kennziffer *AN/116/24* an die
Humboldt-Universität zu Berlin, Philosophische Fakultät, Institut für
Bibliotheks- und Informationswissenschaften, Prof. Robert Jäschke,
Unter den Linden 6, 10099 Berlin oder bevorzugt per E-Mail in einer
PDF-Datei an robert.jaeschke(a)hu-berlin.de. Auf die Vorlage von
Lichtbildern/Bewerbungsfotos verzichten wir ausdrücklich und bitten
daher, hiervon abzusehen.
Bei Fragen wenden Sie sich gern an Prof. Dr. Robert Jäschke
(robert.jaeschke@hu- berlin.de).
Zur Sicherung der Gleichstellung sind Bewerbungen qualifizierter
Frauen besonders willkommen. Schwerbehinderte Menschen werden bei
gleicher Eignung bevorzugt. Bewerbungen von Menschen mit
Migrationsgeschichte sind ausdrücklich erwünscht. Da wir Ihre
Unterlagen nicht zurücksenden, bitten wir Sie, Ihrer Bewerbung nur
Kopien beizulegen.
Datenschutzrechtliche Hinweise zur Verarbeitung Ihrer
personenbezogenen Daten im Rahmen des Ausschreibungs- und
Auswahlverfahrens finden Sie auf der Homepage der Humboldt-Universität
zu Berlin: https://hu.berlin/DSGVO.
--
Prof. Dr. Robert Jäschke Humboldt-Universität zu Berlin
< https://hu.berlin/RJ >>>>>>>>>>><<<<<<<<<<< +49 (0)30 2093-70960 >
< https://weltliteratur.net/ >>>>><<<<< https://dev.bibsonomy.org/ >